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ABSTRACT 

We give a normal form for families Of 3-dimensional Poisson structures. 
This allows us to classify singularities with nonzero 1-jet and typical 
bifurcations. The Appendix contains corollaries on classification of families 
of integrable 1-forms on R 3. 

1. I n t r o d u c t i o n  and main  results  

After it was understood that Poisson structures play a significant role in classi- 

cal and quantum mechanics, Po i son  geometry became an attractive branch of 

mathematics. The first extensively studied Poisson structures were the regular 

ones ([Li]); later there appeared an interest in the study of singularities ([Ar], 

[Well). The singular Poisson structures, including homogeneous ones, appear in 

the study of integrable Hamiltonian systems. In [Ar] such a Poisson structure on 

the base of versal deformation of singularities was constructed, and normal forms 

for singular 2-dimensional Poisson structures were given. In the 2-dimensional 

case the classification is similar to that of functions. This is not so beginning 
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from the 3-dimensional case because of the Jacobi identity which starts to play 

an important role in all classification results. 

This paper is devoted to the 3-dimensional case. We classify local families 

P~ of Poisson structures on R 3 such that Po has a singular point 0 E R 3 (i.e., 

Po(0) = 0) and j lpo does not vanish. This allows us to classify individual germs 

of Poisson structures and bifurcations which hold in generic 1-parameter families. 

All objects are assumed to be of the class C~176 all families are assumed to 

depend smoothly on parameters. Let M be a smooth manifold and N the ring of 

smooth functions on M. Recall that a Poisson structure on M is a composition 

law (f,  g) ~-+ {f, g} on N which endows N with a Lie algebra structure and sat- 

isfies the condition {fg, h} = f{g, h} + g{f, h} for every f ,  g and h in N. Such 

a composition law is called a Poisson bracket. It is determined locally by the 

brackets {x~,xj} where (x l , . . . . ,x , , )  are local coordinates. A Poisson structure 

can also be viewed as the 2-vector P = ~"~i<j {xi, xj }O/Oxi AO/Oxj; then the Pois- 

son bracket of two functions f and g is given by the relation {f ,g} = P(df, dg). 
By local equivalence of Poisson structures we always mean the equivalence with 

respect to the natural action of the group of local diffeomorphisms. Two local 

families P~ a n d / 3  are called equivalent if there exists a family of diffeomorphisms 

r such that  r = 0 and (r = / 3  for all small e. In this definition it is 

not required that  r = 0 as e :~ 0. 

If M is a 3-dimeusional orientable manifold then any volume form f~ induces 

a 1-1 correspondence between Poisson structures and integrable 1-forms. This 

correspondence is realized by the isomorphism b: Z -+ igf~ between p-vectors 

and (3 - p)-forms. Therefore all results of this paper can be reformulated as clas- 

sification results for local integrable 1-forms on R 3 defined up to multiplication 

by a nonvanishing function; see the Appendix. 

Our main result, allowing one to analyse singularities and bifurcations, is a 

versal unfolding of any Poisson structure having nonzero 1-jet at the origin. 

THEOREM 1.1: Let P~ be a local family of Poisson structures on R 3 such that 

P(O) = O, j~P ~ O, where P = Po. Assume that j~P is not isomorphic to the 

Poisson structure 

(1 .1 )  = 0, { y , z }  = y ,  = - x .  

Then P~ is equivalent to a local family of the form 

(1 .2 )  ( x , y }  = z ,  { y , z }  = { z , x }  = 
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and there exists a family of formal changes of the coordinates x, y, z, centered at 

the point x = y = z = 0 for all e, reducing (1.2) to the form 

(1.3) {x ,y )  = z, {y ,z}  = O]~(x,y) .~_zO~(x,Y)~x {z ,x}  - O]c(x,y) ~_zO~(x, y) 
Ox ' Oy Oy ' 

where the formal series ]~ and ~ satisfy the relations 

(1.4) .~(0) = ~(0)  = O, dL  A d ~  - O. 

This normal form is, to some extent, a generalization of the Bogdanov-Takens 

formal normal form for families of vector fields on a plane (see [AI D. Given a 

family of vector fields v~(x, z) = ~ ( x ,  z)O/Ox + ~ ( x ,  z)O/Oz on the (z, z) plane, 

we can associate to it a family of Poisson structures on R 3 of the form 

0 - -  ^ 
(1 .s )  0 y  

It follows from the proof of Theorem 1.1 in section 5 that,  in general, such a family 

is reducible to the normal form (1.3), where the series ]~(x, y) and ~r y) do not 

depend on y. Therefore (1.3) takes the form ~ A (z --~ oF + (A,(x) + z B , ( x ) ) ~ )  
which corresponds to the Bogdanov-Takens normal form. 

Using the normal form (1.3)-(1.4) we distinguish the following singularity 

classes. In what follows ] = s and ~ = go, where • and ~r are the functional 

parameters in the normal form (1.3). 

1) A Poisson structure P has a V singularity at the origin if either j~P is 

isomorphic to the Poisson structure (1.1) or j ~  r 0. 

2) A Poisson structure has a so(3) singularity at the origin i f j~ ]  is R-equivalent 

to x 2 + y2 (then J~0 = 0 by (1.4)). 

3) A Poisson structure has a s/(2) singularity at the origin ifj2o] is R-equivalent 

to x 2 - y2 or to - x  2 - y2 (then j ~  = 0 by (1.4)). 

4) A Poisson structure has an A + (resp. A- )  singularity at the origin if j~]  is 

R-equivalent .to x 2 (resp. - x  2) and j ~  = 0. An A singularity is either an A + or 

A-  singularity. 

5) A Poisson structure has a N singularity at the origin i f j ~ ]  = 0 and j ~  = 0. 

Within N singularities we will study only N + and N -  singularities - -  the cases 

where j2~ is R-equivalent to x 2 + y2 and x 2 - y2 respectively. 

It is clear that any Poisson structure P such that P(O) = O, j~P r 0 has at the 

origin one of these 5 types of singularities. The singularity classes V, so(3), sl(2), A 

and N are related to the classification of 3-dimensional Lie algebras since each 
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of the singularity classes is distinguished by a condition on the 1-jet at the origin 

of a Poisson structure, and the 1-jet of any Poisson structure P, P(0) = 0, can 

be identified with a Lie algebra. It is not hard to check the following facts. 

a) The so(3) and sl(2) singularities correspond to the Lie algebras so(3) and 

sl(2) respectively (up to isomorphism). 

b) The Lie algebras corresponding to the other singularity classes are iso- 

morphic to a Lie algebra of the form [el,e2] = 0, [el,e3] = bl,lel + bl,2e2, 

[e2, e3] = b2,1el + b2,2e2 with real parameters bij. 

c) Let B = (b~,j). The V singularities are distinguished by the condition 

traceB ~ O, the A singularities by the condition traceB = O, detB ~ 0 (detB > 0 

in the case of A + singularities and detB < 0 in the case of A- singularities), and 

the N singularities by the condition traceB = 0, detB = O, B r O. The 

singularity classes N + and N -  cannot be distinguished in terms of the 1-jet of a 

Poisson structure (they are distinguished by a condition on j2p) .  

The singularities so(3) and sl(2) are well known due to the works [Col, Co2, 

Well. A Poisson structure having a so(3) or sl(2) singularity at the origin is 

formally equivalent to the linear Poisson structure 

{x,  = z, z }  = x, {z ,  x }  = + y ,  

where the sign + (resp. - )  corresponds to the so(3) (resp. sl(2)) singularity. In 

the case of so(3) singularities this normal form also holds in the C ~ category. 

The so(3) and sl(2) singularities are isolated and irremovable: if there is a 

family Pc, e E R l, of Poisson structures such that P0 has a so(3) (resp. sl(2)) 

singularity at the origin, then there is a neighbourhood W of 0 E R t and a 

neighbourhood U of 0 E R 3 such that for any e E W the Poisson structure P, 

has a unique singular point in U at which a so(3) (resp. s/(2)) singularity holds. 

The beginning of the classification of V singularities can be found in the work 

[Du]. The classification reduces to the orbital classification of vector fields on a 

plane due to the following result: a local family PC of Poisson structures such that 

P0 has a V singularity at the origin is C ~ equivalent to a family of the form (1.5). 

In view of the correspondence between 3-dimensional Poisson structures and 

integrable 1-forms, this result is analogous to the well-known Kupka phenomenon 

[Ku]: the local classification of integrable 1-forms w on R 3 such that dw(0) r 0 

reduces to the classification of arbitrary 1-forms on a plane. 

It follows that the V singularities are also irremovable, but their geometry 

essentially differs from that for the so(3) and s/(2) singularities: if a Poisson 

structure has a V singularity at the origin then it also has a V singularity at 
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each point of a smooth curve passing through the origin. A detailed study of the 

V singularities is contained in section 2. 

The A singularities are studied in section 3. These singularities can be re- 

moved by a small perturbation of an individual Poisson structure, but they are 

irremovable in 1-parameter families of Poisson structures. We give a normal form 

for any deformation of an algebraically isolated A singularity. In particular, an 

individual Poisson structure having an algebraically isolated A singularity at the 

origin is formally equivalent to a Poisson structure of the form 

(0o 0) 
n(x,y,z) A iy -5;zA  , 

where m >_ 2 and H is a nonvanishing function. This statement, expressed in 

terms of integrable 1-forms, can also be obtained as a corollary of the results of 

Moussu [Mo] or Malgrange [Ma]. 

The geometry of a generic 1-parameter perturbation PC of a Poisson structure 

P having a generic A singularity at the origin is as follows. If e < 0 then P~ 

contains no singular points near the origin; the Poisson structure P = P0 has 

an isolated singular point which decomposes into two singular points near the 

origin as e > 0. These singular points are both s/(2) singularities of P~ if P 

has an A-  singularity at the origin. If P has an A + singularity at the origin 

then one of the singular points is a so(3) singularity and the other is a s/(2) 

singularity. It is remarkable that no perturbation of an arbitrary algebraically 

isolated A singularity leads to a V singularity whereas the A singularities of the 

Lie algebras are adjoint to the V singularities. 

The most difficult are the N + and N -  singularities studied in section 4. We 

prove that generic N + and N -  singularities are irremovable in 1-parameter fam- 

ilies of Poisson structures. This is a bit surprising since, on the level of the Lie 

algebras, the N singularities are typical only in 2-parameter families. We prove 

that there are three types of bifurcations in generic 1-parameter families P~ such 

that Po has a generic N + or N -  singularity at the origin: 

a) If e <: 0 then P~ has an isolated singular point which is a so(3) singularity if 

< 0 and an N + singularity if e = 0. If e > 0 then the set of singular points of 

P~ consists of an isolated singular point and a closed curve. The isolated singular 

point is a s/(2) singularity, and each point of the curve is a V singularity. 

b) If e <_ 0 then P~ has an isolated singular point which is a s/(2) singularity if 

< 0 and an N + singularity if e = 0. If e > 0 then the set of singular points of 

P~ consists of an isolated singular point and a closed curve. The isolated singular 

point is a so(3) singuiarity, and each point of the curve is a V singularity. 
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c) The set of singular points of P, has the form (in suitable coordinates) 

{z = 0, x 2 - y 2 - e  = 0 } U { x  = y = z = 0}. Any singular point except the 

origin is a V singularity. The origin is a s/(2) singularity if e :~ 0 and an N -  

singularity if e = 0. 

The type of the bifurcation and the type of V singularities (node, saddle, focus) 

that  appear can be determined in terms of the 3-jet of P0. 

2. V-s ingu la r i t i e s  

Using the cur l  of a Poisson structure we show in section 2.1 that the classifi- 

cation of V singularities reduces to the orbital classification of vector fields on 

a plane (analogous to the Kupka phenomenon [Ku]). Applying known results 

on the latter classification we obtain, in section 2.2, corollaries on normal forms, 

geometry and bifurcations. 

The V singularities are never isolated - -  they hold at points of smooth curves. 

We distinguish hyperbolic V singularities (node, saddle and focus) and saddle- 

node V singularities. The hyperbolic V singularities are irremovable, and generic 

saddle-node V singularities are irremovable in 1-parameter families (in generic 

1-parameter families the saddle-node bifurcation holds). The results of section 

2 continue the results of the paper [Du], where the nonresonant V singularities 

were classified. 

2.1. REDUCTION TO VECTOR FIELDS. A volume form f~ on R 3 induces the 

isomorphism b: Z -+ izf~ between p-vectors and (3 - p)-forms on 11( 3. The curl 

of a Poisson structure P with respect to f~ is defined to be the vector field 

X -= b-l(d(b(P))). It is known (see [DH], [We2]) that for any gt the curl X is an 

infinitesimal symmetry of P,  i.e., IX, P] = 0. If P(0) = 0 then the vector X(0) 

does not depend on f~. Computing the curl of the Poisson structure (1.3) with 

respect to the volume form dx A dy Adz, we obtain 

X Og 0 Og 0 
- + 

Oy Ox Ox Oy 

This relation proves the following statement. 

PROPOSITION 2.1: For a Poisson structure P, P(O) = O, the origin is a V sin- 

gularity if  and only if  the curl of P with respect to some (and then any) volume 

form does not vanish at the origin. 

Assume that we have a family P, of Poisson structures such that P0 has a V 

singularity at the origin. Let Xe be the curl of P, with respect to a fixed volume 
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form f~. By Proposition 2.1 there exists a coordinate system (depending smoothly 

on e) such that  X~ = cg/Oy. In the 3-dimensional case the Jacobi formula implies 

X, A Pc = 0. It follows from this relation and the relation [Xc, Pc] = 0 that in the 

chosen coordinate system P~ has the form (1.5). Returning to the characterization 

of V singularities in terms of the 1-jet of a Poisson structure, we conclude that 

the sum of the eigenvalues of the vector field v0 in (1.5) is different from zero. 

So, we have proved the following statement. 

PROPOSITION 2.2: Any local family Pc of Poisson structures on R 3 such that Po 

has a V singularity at the origin is equivalent to a family of the form 

o AV,, , 

where the sum of the eigenvalues" of the linearization at the origin of the vector 

field vo is different from zero. 

Consider now two families of Poisson structures 
0 0 

P c =  ~ A v e  and /5c= ~yyA~c, 

where 
o o +L(x,z)  o 

v c = a c ( x , z )  + tic(x, z) and Oc = & c ( x , z ) ~  Ozz" 

Assume that the families vc and vc are orbitally equivalent, i.e., there exists a 

family r of local diffeomorphisms of the (x, z) plane such that (r = h,0c, 

where hc is a family of functions such that h0(0) ~: 0. Then the diffeomorphism 

(x, z) ~-+ Co(x, z), Y ~'~ Y/hc brings Pc to /3  c. So, the orbital equivalence of the 

families vc and ~, implies the equivalence of the families Pc and/~,. The inverse 

statement holds under the assumption that the fields vo and v0 have isolated 

singularities at the origin. In fact, let r be a family of diffeomorphisms sending 

Pc to /5  c. Since the Y axis is the set of singular points for both Po and /50, the 

diffeomorphism r sends the plane Y = 0 to a surface transversal to the Y axis. 

This property remains true for the diffeomorphism r when e is small. Therefore 

there exists a family of functions go(x, z) such that the superposition #~ of r 

with the diffeomorphism vc: (x, B, z) -+ (x, Y - go(x, z), z) preserves the plane 

y = 0 for each small enough e. The diffeomorphism vc is a symmetry of the 

Poisson structures Pc and/3c. It follows that the superposition #c also brings Pc 

to/~,. It is easy to check that the restriction of #c to the plane Y = 0 brings v~ to 

vc multiplied by a nonvanishing function, i.e., the families v, and vc are orbitally 

equivalent. We have proved the following statement reducing the classification 

of V singularities to the orbital classification of vector fields. 
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PROPOSITION 2.3: Let 

v ~ = c ~ ( x , z )  + ~ ( x , y ) ~  z and ~ = & ~ ( x , z )  + ~ ( x , y ) - ~ z  

be two local families of vector fields such ~hat the vector fields Vo and ~0 have 
o isolated singular point at the origin. The family of Poisson structures P~ = ~ Av~ 

is equivalent to the family [~ = o~ A ~ if and only if the family v~ is orbitally 

equivalent to the family ~ .  

2.2. NORMAL FORMS AND GEOMETRY OF V SINGULARITIES. The results of 

this section are direct corollaries of Propositions 2.2 and 2.3 and results on the 

orbital classification of vector fields on a plane; see [AI, Bo]. At first we distin- 

guish node, saddle, focus and saddle-node V singularities. Assume that  a Poisson 

structure P has a V singularity at the origin. By Proposition 2.2, P is equiva- 

lent to a Poisson structure of the form ~ A v, where v is a vector field on the 

(x, z) plane, v(0) = 0. Let A1 and A2 be the eigenvalues of the lincarization of 

the vector field v in this normal form. By Proposition 2.3 they are invariantly 

related to P up to multiplication by a common factor, and we will say that  A1 

and A2 are the eigenvalues of P. Note that  AI + A2 y~ 0; see Proposition 2.2. 

We will say that  a V singularity is hyperbolic if ~1 ~: 0 and A2 ~= 0. Since 

/kl + ~2 ~: 0 this means that  the spectrum of the linearization of the vector field 

v does not intersect the imaginary axis. 

Within hyperbolic V singularities we distinguish node V singularities corre- 

sponding to the case where A1 and A2 are real nonzero numbers of the same sign, 

saddle V singularities corresponding to the case where A1 and A2 are real nonzero 

numbers of different signs, and focus V singularities corresponding to the case 

where A1,2 = a =l= ib, a ~ 0, b ~= 0. 

If a V singularity is not hyperbolic then one of the eigenvalues is equal to zero 

and the second is different from zero. In this case we will say that  the origin is 

a saddle-node V singularity. Within saddle-node V singularities there exists a 

degeneration of infinite codimension corresponding to the case where the origin is 

not an algebraically isolated singular point of the vector field v (this is impossible 

for hyperbolic V singularities). If such a degeneration holds we will say that  the 

origin is an exchlsive saddle-node V singularity. 

THEOREM 2.4: Assume that P has a hyperbolic or nonexclusive saddle-node V 

singularity at the origin. Then the set of singular points of P in a small enough 

neighbourhood of the origin is a smooth curve 7. The germs of P at points of 7 

are C ~162 equivalent to the germ of P at the origin and C ~176 equivalent to one of 
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the following normal forms: 

(2.1) { x , z } = 0 ,  { x , y } = z ,  { z , y } = 0 x + z ,  

0 �9 R -  {0}; 

(2.2) { x , z } = 0 ,  { x , y } = N x + S z  N, {z,y}=z, 

N C { 1 , 2 , 3 , 4 . . . } ,  5 � 9  

(2.3) {x,z}=O, {x,y}=-P-x+Sxq+lz p+Sax2q+lz 2p, {z,y}=z, 
q 

5E {1,-1,O},a C R; 

(2.4) {x, z} = 0, {x, y} =  p§247 + a 2p+l, {z, = z, 

p_>l ,  5 e { 1 , - 1 } ,  a E R .  

The normal form (2.1) holds for focus V singularities and nonresonant node or 

saddle V singularities, i.e., for node V singularities such that neither A1/A2 nor 

A2/A1 is an integer number and for saddle V singularities such that A1/A2 is not 

a rational number. Here A1 and A2 are the eigenvalues of P. The normal form 

(2.2) holds for resonant node V singularities, the normal form (2.3) holds for 

resonant saddle V singularities (in this normal form p and q are positive integer 

numbers and p/q is an irreducible fraction), and the normal form (2.4) holds for 

nonexclusive saddle-node V singularities. 

Since the hyperbolic singular points of vcctor ficlds are irremovable, the hy- 

perbolic V singularities are irremovable under a small perturbation of a Poisson 

structure. Namely, if P has a node (resp. saddle, focus) V singularity at the 

origin and P~ is a family of Poisson structures, e E R ~, such that  Po = P, then 

there exist a neighbourhood of the origin U C R 3 and a neighbourhood of the 

origin W C R ~ such that for any e 6 W the set of singular points of P, in U is a 

smooth curve %. The family 7~ depends smoothly on e and each point of % is 

also a node (resp. saddle, focus) V singularity of P,. 

The saddle-node V singularities are irremovable only in 1-parameter families of 

Poisson structures. Using the correspondence between V singularities and vector 

fields on a plane, we will say that a saddle-node V singularity is generic if p = 1 

in the normal form (2.4). If P has a generic saddle-node singularity at the origin 



208 J . P .  DUFOUR AND M. ZHITOM1RSKII Isr. J. Math. 

and P~ is a 1-parameter deformation of P, then in a suitable coordinate system 

(depending smoothly on e) the 2-jet of the family P~ has the form {x, z} = 

0, {x,y} = f o ( e ) + f l ( e ) x + x  2, {z ,y}  = z. We will say that P, is ageneric 

deformation of P if f~(0) r 0. In this case the following (up to the change 

e -~ -e) saddle-node bifurcation holds (analogous to the well known saddle-node 

bifurcation for vector fields). There exists a neighbourhood of the origin U C R 3 

and a neighbourhood of the origin W C R such that if e E W is a negative number 

then U contains no singular points of P~ and if e E W is a positive number then 

the set of singular points of P, in U consists of two disjoint smooth curves. The 

points of the first curve are saddle V singularities and the points of the second 

curve are node V singularities of P~. 

3. A singularities 

This section contains results on algebraically isolated A singularities. Recall that 

a Poisson structure {x, y} = B(x,  y, z), {y, z} = C(x, y, z), {z, x} = D(x,  y, z) 

has an algebraically isolated singularity at the origin if the factor ring of the 

ring of all formal series over the ideal generated by the formal series of the 

functions B, C and D has finite dimension over R. It is clear that an A singularity 

is algebraically isolated if and only if the formal series ]o(X, y) in the normal 

form (1.3) is R-equivalent to :t:x 2 5: ym+l for some m >_ 2. It follows that  all 

A singularities, except degenerations of infinite codimension, are algebraically 

isolated. We will say that an A singularity is generic if m = 2. 

THEOREM 3.1: Let P, be a local family of Poisson structures of the form (1.2) 

such that Po has an algebraically isolated A singularity at the origin Po. There 

is a family of smooth changes of coordinates parametrized by e such that in the 

new coordinate system P, has the form 

(3.1) H~(x,y ,z )  z 0 0 0 0 

i=0 

modulo a fiat field of 2-vectors at the point P0, where m >_ 2, H0(0) > 0, ho(0) = 

. . . .  hm-2(O) = O, (f = +1 if m is odd and 5 = 1 i f m  is even. 

The sign + (resp. - )  in (3.1) corresponds to the case of A + (resp. A- )  

singularities. Note that in general the point P0 is the origin of the coordinate 

system of the normal form (3.1) only if e = 0. 

In particular, any 1-parameter unfolding of a generic 

the formal normal form 

(3.2) H,(x,y,z) 

A singularity reduces to 
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A 1-parameter unfolding of a generic A singularity will be called generic if the 

function h0 in this normal form satisfies the condition h~)(0) r 0. The following 

theorem says that  A singularities are irremovable in 1-parameter families of Pois- 

son structures and a generic individual A singularity decomposes, under a small 

perturbation, into two singular points; the type of singularity at these points 

depends on the type of singularity of P at the origin (A + or A-) .  

THEOREM 3.2: Let P~ be a generic 1-parameter unfolding of a generic Poisson 

structure P having an A singularity at the origin. Then the following bifurcation 

(up to the change e -~ -e)  holds in a neighbourhood of the origin U C R 3 and 

in a neighbourhood of the origin W C R. Ire E W and e < 0 then U contains no 

singular points of P~; ire E W and e > 0 then U contains two singular points of 

P~. If  the singularity of P has the type A + then one of these singular points is a 

so(3) singularity and the other is a s/(2) singularirty. If  the singularity of P has 

the type A -  then the two singular points are s/(2) singularities. 

Theorem 3.2 is an easy corollary of the normal form (3.2). One also can ob- 

tain, using the normal form (3.1), that any (not necessarily generic) algebraically 

isolated A-  singularity decomposes, under a small perturbation, into s/(2) sin- 

gularities, and any algebraically isolated A + singularity decomposes into so(3) 

and sl(2) singularities. It follows that there is no adjacency between algebraically 

isolated A singularities and V singularities. Note that such an adjacency holds 

for Lie algebras - -  a suitable perturbation of any Lie algebra of the type A (in 

the class of Lie algebras) leads to a Lie algebra of the type V. 

Proof of Theorem 3.1: We will use Theorem 1.1, i.e., the formal normal form 

(1.3)-(1.4). Since Po has an algebraically isolated singularity at the origin then 
the 1-form d]o(x, y) also has an algebraically isolated singularity at the origin of 

the (x, y) plane. Using this observation and results of the paper [Mo] we conclude 

that  (1.4) implies that ~ -- A~ o ]~, where A~ is a family of formal series in one 

variable depending smoothly on e. 

Now we will show that  P~ admits a family of Casimir functions, i.e., there 

exists a family (~ = C~(x, y, z) of nonzero formal series such that  Ce(0) = 0 and 

{6'~, x} = {C~, y} = .{C~, z} = 0. The latter relation means that  P~(dC~, dh) = 0 

for any formal series h. 

Taking into account the relation ~e = Ar o ]~ it is natural to seek a family of 

Casimir functions in the form C~(x,y,z) = Ge(z,]r where G~ = G~(z,w) is a 

family'of formal series in two variables. A simple computation shows that 
^ ^ 
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where ^ 

The equation ( ~  = 0 has a formal solution (~(z ,  w) of the form 

C,(~, . , )  = ~ + z~/2 + ~(~)~ + [~.(z,~), 

w h e r e / ~  is a formal series with zero 2-jet for each fixed e. Therefore P~ admits 

a family of Casimir functions C~(x, y, z) such that  

do(x, y, z) =/o(x, ~) + ~2 /2 + a(O)]~(~, y) + Ro(~, ]o(~, ~) ). 

r r , + l  

The series .fo(x,y) is R-equivalent to i ~  + (fY---:- where m > 2, ~ = 1 if m 
r n + l  ~ 

is even and ~ E { -1 ,  1} if m is odd. It  follows that  the series Co(x,y,z)  is R- 
Z2 ~2 

equivalent to T =t= T + ~ . Let C~(x, y, z) be a family of smooth functions 

such tha t  the formal series of C~(x, y, z) is equal to ~?~(x, y, z). Then there exists 

a new smooth system of coordinates ~ = ~ ,  ~ = ~ ,  5 = 5~ such that  

C~(x, y, z) = C~(a?, ~), 5) = o~(~) + ~- + ~-  + m + 1 + ~ hi(~)~)i' 
i = l  

where hi(0) = 0; see [AVG]. Now Theorem 3.1 easily follows from the observation 

that  the functions 

are flat at the point x = y = z = 0. | 

4. N + a n d  N -  s i ngu l a r i t i e s  

In this section we show that  the N + and N -  singularities are typical in 1- 

parameter  families of Poisson structures (though they are typical only in 2- 

parameter  families of Lie algebras) and analyse typical bifurcations in 

1-parameter families P~ such that  P0 has an N + or N -  singularity at the origin. 

The analysis of bifurcations is based on the following proposition. 

PROPOSITION 4.1: Any local family of Poisson structures P~ such that Po has 
an N + or N -  singularity at the origin is equivalent to a family of the form 

{x, y} = z, {y, z} = A~(x, y)(z + C~(x, y)) + z2Ql,,(x, y, z), 
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(4.1) {z ,x}  = B J x ,  y)(z + C J x ,  y)) + z2Q2,Jx, y, z), 

where the formal series of the functions A~, B~ and Cr have the form 

, 4 ~ ( x , y )  : 32 (.~0(s -b ,)tl(s 2 + y2) _~_ ~2(s _{_ y2)2 _{_...), 
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(4.2) & ( ~ ,  y) = + y  (~o(~) + ~ ( ~ ) ( ~  i y~) + ~2(~)(x ~ j: y~)~ + . . . ) ,  

0o(~ ,  y) = , o ( d  + , ~ ( ~ ) ( ~  + y~) + ~2(~)(~ ~ + y~)2 + . . . ,  

and the functions Ao(e) and #o(e) satisfy the conditions 

(4.3) A0(0)#0,  #0(0)=0 .  

The signs + (resp. - )  in (4.2) correspond to the case where Po has a N + (resp. 

N - )  singularity at the origin. 

This proposition will be proved at the end of the section. In terms of the normal 

form (4.1)-(4.2) we define a generic N + or N -  singularity and its generic 1- 

parameter unfolding. An N + or N -  singularity will be called generic if ~1 (0) r 0, 

and a 1-parameter unfolding will he called generic if ~(0)#1(0) r 0. 

The bifurcations in generic 1-parameter unfoldings of generic N + and N -  

singularities depend on the signs of the numbers 

The main result of this section is the following theorem. 

THEOREM 4.2: Let P be a Poisson structure with a generic N + or N -  singularity 

at the origin, and let Pe be a generic/-parameter unfolding of P. There exists 

a coordinate system k = ~ ,  ~) = ~e, ~ = Y:~, ~ = eQ(e), Q(0) ~- 0, such that the 

following statements hold (locally near the point ~ = ~] = ~ = ~ = 0). 

1) The set of singular points of P~ has the form 

{~ = 0, ~2 + ~ _ g = 0} u {~ = ~ = ~ = 0} 

in the case of an N + singularity and 

{~ = o, ~= - 9 = - g = o} u {~ = 9 = ~ = o} 

in the case of an N -  singularity. 
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2) The  Poisson s tructure P~ has a V singularity at any singular point  except  the 

point  ~. = fl = z = O. A n y  V singularity is a node V singularity i f  ,~2 >_ 0 and 

'~1 > O, a saddle V singularity i f  ,~2 >_ 0 and ~1 < O, and a focus V singularity i f  

t~2 < O. 

3) I f  P has an N + singularity at the origin and ~1 > 0 (resp. I~ 1 < O) then the 

point  5: = ~3 = ~. = 0 is a so(3) (resp. sl(2))  singularity o f  P~ i f  e > 0 and a sl(2) 

(resp. so(3))  singularity i f  e < O. 

4) I f  P has an N -  singularity at the origin then for any e # 0 the Poisson 

s tructure  P~ has a sl(2) singularity at the point  ~c = fl = 5 = O. 

This theorem implies tha t  there are three types of typical bifurcations: 

a) e < 0: a unique singular point  - -  a so(3) singularity; e = 0: a unique 

singular point  - -  an N + singularity such that  ~1 > 0; e > 0: a sl(2) singularity 

at  an isolated singular point and a closed curve of V singularities which are either 

nodes (if ~2 > 0) or focuses (if ~2 < 0). 

b) e < 0: a unique singular point - -  a sl(2) singularity; e = 0: a unique 

singular point  - -  an N + singularity such tha t  t~l < 0; e > 0: a so(3) singularity 

at  an isolated singular point and a closed curve of saddle V singularities. 

c) The  set of singular points consists of a point p and two curves given by the 

equat ion x 2 - y2 = e, z = 0 in a coordinate system centered at the point  p. The  

point p is a sl(2) singularity if e # 0 and an N -  singularity if e = 0. All other  

singular points are node or saddle or focus V singularities depending on the signs 

of the numbers  ~1 and ~2 only. 

Proo f  o f  Theorem 4.2: We will restrict ourselves to the case of N + singularities 

such tha t  ~1 > 0 (the proof  for the other cases is similar). Throughou t  the proof  

we use the normal  form (4.1)-(4.2). We will assume that  #~(0)#1(0) < 0 (for if 

not  one can change e by ~ = -e ) .  The first s ta tement  of Theorem 4.2 obviously 

follows from the normal  form, and the second and third s ta tements  are corollaries 

of the following calculations. 

a) Assume that  e < 0. The equation C~(x ,y )  = 0 has no solutions near the 

origin, therefore the point x = y = z = 0 is the only singular point of P~. The  

linearization of P~ at this point has the form 

(4.4) { x , y }  = z, { y , z }  = { z , x }  : 

The relations e < 0,~](0)J]l(0)  < 0 and #1(0)1o(0) > 0 imply tha t  #o(e)Ao(e) > 

0, and it follows tha t  P~ has a so(3) singularity at the point x = y = z = 0. 

b) Assume tha t  e > 0. The set of singular points of P~ consists of the point  

x = y = z = 0 and the closed curve F~ given by the equations z = 0, C~(x, y) : O. 
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The linearization of Pe at the point x = y = z = 0 has the form (4.4), but now 

e > 0 and #0(e)Ao(e) < 0. Therefore Pe has a s/(2) singularity at the point 

x = y = z = O .  
These calculations prove the third statement of Theorem 4.2. To prove the 

second statement, take a point p of the curve Fe. The linearization of Pe at p has 

the form 

/ oc, oc~ ) 
{~,y}  = z, {y,z}  = A,(p) (-~-(p)~+ -5~y (p)y+z , 

) (4.5) {z, ~} = Be(p) ~ - ~ - ( p ) ~  + (v)y + z . 

The Jacobi identity implies 

oce ace 
(4.6) Ae (v) ~ (v) = B~(V) ~ (V). 

Assume that  Be(p) r O. Let u = Ae(p)x + B~(p)y. Taking into account (4.6) we 

obtain that in the coordinate system x, z, u the Poisson structure (4.5) takes the 

form 

~ (v)u 
(4.7) {u,z} = 0, {x,u} = Se(p)z, {x,z} = -Be(p)z -  Oy " 

Now we see that the condition Be(p) # 0 implies that  Pe has a V singularity at 

p. On the other hand, the same conclusion holds if A,(p) # O. In this case we 

use the coordinate system y, z, u in which (4.5) takes the form 

oce 
{ u , z } = 0 ,  {y,u}=-Ae(p)z,  {y,z}=A~(p)z+-~x(P)U. 

Note now that  for any point p 6 F~ either A,(p) # 0 or Be(p) ~ O. Therefore Pe 

has a V singularity at any point of the curve Fe. 

The type of V singularity (saddle, node, focus) is the same for all points of 

F~ (see section 2), therefore for its determination it suffices to analyse the linear 

approximation at a single point of F~, for example, at a point q which is the 

intersection of F, with the semiaxis {x = z = 0, y > 0}. The point q has the 

coordinates (0, r v ~  + O(vq), 0), where 

•/ ~(0) 
r = zl(0)" 
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The function B~ does not vanish at q, therefore the linear approximation of P~ 

at q is isomorphic to (4.7). Note that  

B~(q) = r~0 (0 )v~  + o(vT),  

OC~ (q) = 2r~l(O)v7 + o( vT). 
Oy 

These relations allow us to write (4.7) in the form rv/~b-~x A v0 + o(x/~), where 

s o 
v0 = ~0(0)z - (~0(0)z + 2 . t ( 0 ) u ) ~ .  

It follows that  the type of the V singularity of P~ at q is determined by the type 

of singular point of the vector field v0. Computing the eigenvalues of v0 we obtain 

the second statement of Theorem 4.2. | 

Proof of Proposition 4.1: The idea of the proof is as follows. At first we prove 

that in a suitable smooth coordinate system the curl of PC vanishes at the origin 

for all e. After this we reduce Pe to the formal normal form (1.3)-(1.4) and 

simplify this normal form using the condition on the curl. This simplification 

allows us to obtain the smooth normal form (4.1)-(4.2). 

Take a coordinate system x, y, z (depending on e) such that P, has the form 

{x, y} = z, {v, z} = c~(~, v) + za~(x, y) + z~Ql,~(x, y, z), 

(4.8) {z, x} = de(x, y) + zb~(x, y) + z2Q2,e(x, y, z). 

The Jacobi identity restricted to the plane z = 0 gives the relation 

(4.9) c~(x, y)b~(x, y) = de(x, y)a~(x, y). 

It is easy to see that  the condition that P0 has an N + or N -  singularity at the 

origin implies that the function no(x, y) and bo(x, y) are differentially indepen- 

dent. Therefore the relation (4.9) implies the existence of a family s~(x, y) such 

that  

(4.10) c~(x,y) = se(x,y)ae(x,y), de(x,y) = sc(z,y)b~(x,y). 

Consider the family p~ of points with coordinates x, y, z such that 

z = 0 ,  a ~ ( x , y ) = 0 ,  b~ (x ,y )=0 .  
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It is clear that Pc depends smoothly on e and that pC is a singular point of P~. 

The linearization of P~ at the point Pc has the form 

(4.11) {x , y }=z ,  {y,z}=s~(p~)(elx+e2y), {z,x}=sc(pc)(e3x+e4y). 

It is easy to check that  the Jacoby identity implies that any linear Poisson struc- 

ture of the form (4.11) has the curl vanishing at the point x = y = z = 0. 

Therefore the curl of Pc vanishes at any singular point Pc. 

There is no loss of generality to assume that p~ = 0 for all e, i.e., that  the curl 

of Pc vanishes at the origin, and it what follows we assume that  this condition 

holds. By Theorem 1.1 the family P~ can be reduced, by a formal change of 

coordinates, to the form (1.3)-(1.4). It is easy to see that  any formal change of 

coordinates of the form 

(4.12) (x,y) (r y), y)) 

preserving the volume form dx A dy also preserves the normal form (1.3)-(1.4) 

up to the change ]c ~ ]c or gr ~ g~ o r The fact that the curl of Pc vanishes 

at the origin implies that d~e(0) -- 0 for all e; see section 2. Then the 2-jet of gc 

is R-equivalent to (x 2 + y2), and there is a formal change of coordinates of the 

form (4.12) preserving the volume form dx A dy and reducing ~ to the form 

(4.13) )h (e)(x 2 + y2) + )~2(e)(x 2 + y2)2 + . . . .  

By the condition (1.4) this change of coordinates brings the series ]c to the form 

(4.14) #l(e)(x 2 • y2) + lt2(e)(x2 • y2)2 + . . . ,  

where ~t 1(0) = 0 (the latter follows from the definiton of N singularities). So, 

Pc reduces to the formal normal form (1.3), where the formal series gc and ]c 

have the form (4.13) and (4.14). Now we can return to the smooth normal 

form (4.8), where the formal series of co, de, ac and bc are equal, respectively, 

to O]+/Ox, OfJOy, O~JOx, O[TJOy. Proposition 4.1 is a direct corollary of this 

normal form and the relation (4.10). | 

5. P r o o f  of  T heorem 1.1 

It is easy to see that  the condition that j~P is not isomorphic to (1.1) implies 

that  there are three differentially independent functions a, b and c, vanishing at 

the origin, such that P(da, db) = c. Then Pc(da, db) = co, where cc is a family of 



216 J.P. DUFOUR AND M. ZHITOMIRSKH Isr. J. Math. 

functions such that  Co = c, and in the coordinate system x = a, y = b, z = c~ the 

family Pc has the form (1.2). 

In what follows we will use the following notation. By a!~)(x, y, z), b~O(x, y, z), 
. . .  we denote functions which are polynomials homogeneous of degree i, with 

respect to the first two coordinates, with coefficients being smooth fimctions of 

e and the last coordinate. Also, we will say that  a function h~(x~ y, z) is affine 

with respect to z if it can be written in the form ho,~(x,y) + zhl,~(x,y). Let us 

show that  the normal form (1.3)-(1.4) is a corollary of the following ]emma. 

LEMMA 5.1: Let q >_ 0 and P~ be a family of Poisson structures of the form 

{~, y} = z + c!~§ y, ~) + ~ §  y, z) + . ,  

(5.1) {y,z}  =a~~  . . ' ,  

{z, x} = b!~ y, z) + . . .  + b~q-1)(~, y, z) + b!~)(~, y, ~) + . . . ,  

where the functions ai~ q-l) and b!~ q-') are affine with respect to 

z. There exists a change of coordinates of the form 

X = x + #lq+:)(x,y,z), Y = y, Z = z +7!q+l)(z ,y ,z)  + 7!q+2)(x,y,z) 

reducing Pe to the form 

{X, Y}  = Z + c~q+3)(X, Y, Z) + C!q+4)(X, It', Z) + . . . ,  

(5.2) {Y ,Z}  = a!~ + . . .  + a ! q - ' ) ( X , Y , Z )  + A~q>(X,Y,Z) + "" ,  

{Z, X }  = b~~ Y, Z) + . . .  + b~q-1)(X, Y, Z) + B~q)(x, Y, Z) + . . . ,  

where the functions A~ q) and B~ q) are a//ine with respect to Z. 

This lemma implies the existence of a family of formal change of coordinates 

(centered at the origin for all e) reducing any Poisson structure of the form (1.2) 

to the form 

{x,y}  = z, {y ,z}  = a~(x,y) + zb~(x,y), { y , z } : c ~ ( x , y ) + z d ~ ( x , y ) ,  

with some formal series a~, b~, c~ and d~. The Jacobi identity gives the relations 

Oa~ Oc~ Ob~ Od~ 
a~d~ = b~d~, Ox Oy ' Ox Oy 
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and the normal form (1.3)-(1.4) follows. 

Proof  o f  Lemma 5.1: Make a change of coordinates of the form 

e(q+l)'x (5.3) ~ : = x ,  9 = Y ,  z = z ( l +  e ( , y , z ) ) .  

This change transforms (5.1) to the form 

z~(q+l)~ - . . " " ,  {~., ~)} = ~ + ~ ~ , y,  ~.) + ~ + ~ ) ( ~ . ,  9, ~.) + 
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(5.4) {~), ~.} = a~~ ~), ~)+a?)(~:, t), ~)+ '"  "+a~q-U( 5:, ~9, ~)+A~q)( ~:, Y, z ) + ' " ,  

{~, ~:} = b!~ 9, ~) + bp)(~, ~, ~) + - - - +  b~-~)(~,,), ~) + S P ( ~ ,  9, ~) + - - - ,  

where 

(5 .5)  

Let 

Oe~q +1) 
A~q) = a~q) - z 2 Z~q) : b~q) - z2Oeoq+') 

Ox ' Oy " 

A~ q) = ao,~(x, y) + zcq#(x ,  y) + z2a2#(x, y, z), 

B p  = #o,~ (~, v) + z#l,~ (z, y) + z2~,~ (~, y, z). 

Write the Jacobi identity for the Poisson structure (5.1) in the form 

Eo,~(x, y) + ZEl#(X, y) + z2 E2,e(x, y) + z3 E3,e(x, y, z) = O. 

Using the condition that the functions a!~  q-l)  and b~~ q- ' )  are 

affine with respect to z, we obtain 

= E (q- E(q-2 ) i x  z) + , E3,c(x ,y , z )  3,~ 1)(x,Y,Z) + 3,~ ~ ,Y, "'" 

\ ay b T ]  
Therefore 

(5.6) 0~,~ O/~,~ _ 0. 
Oy Ox 

The relations (5.5) and (5.6) imply that there exists a change of coordinates of 

the form (5.3) which reduces (5.1) to the form (5.4), where the functions A~ q) 

and B~ q) are atfine with respect to 5. 
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Our next step is a change of coordinates of the form 

, r ( q + 2 ) ' ~ :  fi - (5.7) x = & +  ~ ( ,Y ,Z ) ,  9 - -Y,  ~=~ ' ,  

where 
Or~q +2) 
_ _  _ 5 ~ q + 1 )  

Ox 

Isr. J. Math .  

It is easy to see that the change (5.7) reduces (5.4) to the form 

{~, 9} = ~ + ~q+2)(~, 9, ~) + ~!q+3)(~, 9, ~) + . . . ,  

(5.8) {9, ~} = a! ~ Y, ~) +a~ ')(~, Y, ~) +"'+a~ q-1)(~, Y, ~) + A~ q)(k, Y, ~) + ' " ,  

{~, ~} = ~!0)(~, 9, ~) + b!l)(~, 9, ~) + . . .  + b~- l ) (~ ,  9, ~) + B~) (~ ,  9, ~) + ' " .  

Finally, to reduce (5.8) to the requirted normal form (5.2) it suffices to make 

a change of coordinates 

x = ~, y = 9, z = ~ + ~+2)(~, 9, ~). m 

6. Appendix. Normal form for integrable 1-forms 

Let P be a local Poisson structure on R 3, and let ~ be a local nondegencrate 

volume form. Consider P as a field of 2-vectors; then we can associate to P a 

differential 1-form w such that w(Y) = ~ (Y  A P) for any vector field Y. The 

relation [P, P] = 0, valid for any Poisson structure, implies the integrability of 

w: w A dw = 0. The integrable 1-form w depends on the choice of ~, and it is 

clear that ~ is invariantly related to P up to multiplication by a nonvanishing 

function. Denote by (w) the Pfaffian equation generated by w, i.e., a module 

of differential 1-forms over the ring of smooth functions generated by w. This 

Pfaffian equation is invariantly related to the Poisson structure P,  and we will 

denote it by b(P). If, in local coordinates, P has the form 

{x,y} = B(x,y,z) ,  {y,z} = C(x,y,z) ,  {z,x} = D(x,y,z) ,  

then the Pfaffian equation b(P) is generated by the 1-form 

B(x, y, z)dz + C(x, y, z)dx + D(x, y, z)dy. 

Note that any local integrable Pfatfian equation (w) has the form b(P) for 

some Poisson structure P (invariantly related to (w) up to multiplication by a 

nonvanishing function), therefore all the results of this paper imply immediate 

corollaries on the classification of integrable Pfaffian equations. In particular, the 

corollary of our main result, Theorem 1.1, is as follows. 
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THEOREM 6.1: Let w~ be a local family of integrable 1-forms on R 3 such that 

wo(0) = 0 and j~wo is not equivalent to a(xdy - ydx), a 6 R. Then the family of 

Pfaman equations (w~) is equivalent to a family of the form 

(6.1) (zdz + U (x, y, z)dx + y, z)dy), 

and there exists a family of formal changes of the coordinates x, y, z, centered at 

the point x = y = z = 0 for all e, reducing (6.1) to a family of Pfaff/an equations 

generated by 1-forms 

(6.2) zdz + d]~(x, y) + zd~(x ,  y), 

where the formal series ]~ and ~ satisfy the relation d]~ A d ~  - O. 

The singularities of integrable 1-forms were studied by many authors. The V 

singularities of Poisson structures correspond to the case where d~)0(0) # 0, i.e., 

to the integrable Pfaffian equation generated by a 1-form w such that  dw(0) ~- 

0. In this case one can use the Darboux theorem on classification of closed 

nondegenerated 2-forms to show that  w is equivalent to a 1-form of the form 

a(x, y)dx + b(x, y)dy. Therefore the classification of V singularities of integrable 

Pfaffian equations reduces to the orbital classification of vector fields on the plane. 

This well known reduction (see [Ku]) is similar to the results of section 2.1. 

The sl(2),so(3),  A + and A-  singularities of Poisson structures correspond, 

respectively, to the cases where in the normal form (6.2) the formal series ]o 

is R-equivalent to x 2 + y 2  x 2 _ y 2  x 2 : t : y m  _ x 2 i y m ,  m >_ 3, and g0 has 

the form .q0 -- A o ]0 for some formal series A. These singularities of integrable 

Pfaffian equations are algebraically isolated. The results of the papers [Mo] and 

[Ma] imply that  they can be reduced to a formal normal form (dW),  where 

W -- z 2 + x 2 • y2 in the so(3) and sl(2) cases, and W -- z 2 • x 2 4- ym in the A 

case. These normal forms also follow from the works [Col], [Co2], [Well and our 

results in section 3. 

Using the 1-1 correspondence between Poisson structures and integrable Pfaf- 

fian equations, we can also establish corollaries of our results concerning the N 

singularities of integrable Pfaflian equations (the case where g0 is R-equivalent 

to x 2 • y2 and j2]o = 0) and bifurcations of integrable Pfaffian equations near A 

and N singularities. As far ms we know, these results and Theorem 6.1 are new. 

Theorem 6.1 can be generalized to the n-dimensional case. Such a generaliza- 

tion is analogous to a generalization of Theorem 1.1 to Nambu structures. The 

corresponding results and their corollaries will be published elsewhere. 
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